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Introduction

We have discussed that triangular system is easily solvable.

We shall discuss some procedures to convert a linear system into “two
triangular system”, called triangular factorization.

We shall also discuss some special matrices and applications.
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Inner Product

Multiplication of a row matrix
(
x1 x2 . . . xn

)
and a column matrix

y1

y2
...
yn

 (of matching lengths) prodcues a single number :

(
x1 x2 . . . xn

)

y1

y2
...
yn

 := x1y1 + x2y2 + · · ·+ xnyn.

This single quantity is called the inner product of two vectors, denoted
by 〈x , y〉.
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Matrix-Vector Product

Multiplying a matrix by a vector : a row at a time.

Each row of the matrix combines with the vector to give a component of
the product. There are n inner products when there are n rows.

Ax :=



(
a11 a12 . . . a1n

)


x1
x2

.

.

.
xn


(
a21 a22 . . . a2n

)


x1
x2

.

.

.
xn


.
.
.

(
am1 am2 . . . amn

)


x1
x2

.

.

.
xn





=


a11x1 + a12x2 + . . . + a1nxn
a21x1 + a22x2 + . . . + a2nxn

.

.

.
am1x1 + am2x2 + . . . + amnxn

 .

By rows : Ax =

 1 1 6
3 0 3
1 1 4

 2
5
0

 =

 1.2 + 1.5 + 6.0
3.2 + 0.5 + 3.0
1.2 + 1.5 + 4.0

 =

 7
6
7

 .
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Matrix-Vector Product

The second way is equally important. In fact it is more important.

Multiplying a matrix by a vector : a column at a time.

The product Ax is found at all once, and it is combination of the three
columns of A.

By columns : Ax = 2

 1
3
1

+ 5

 1
0
1

+ 0

 6
3
4

 =

 7
6
7

 .

The answer is twice column 1 plus 5 times column 2.

It corresponds to “the column picture” of the linear system Ax = b.

We shall discuss the concept of “columun picture” later.
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Matrix Notation for Individual Entries in a Matrix A

The entry in the ith row and jth column is always denoted by aij .

The first subscript gives the row number and the second subscript
indicates the column.

If A is an m × n matrix, then the index i goes 1 to m - there are m
rows ; and the index j goes from 1 to n - there are n columns.

Altogether, the matrix has mn entries, forming a rectangular array,
and amn is the lower right corner.
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Matrix Notation for Individual Entries in a Matrix A

∑n
j=1 aijxj is the ith component of Ax , formed the inner product of

ith row of A with x . This sum takes us along the ith row of A,
forming its inner product with x .

The length of the rows (the number of columns in A) must match the
length of x .

An m × n matrix multiplies an n-dimensional vector (and produces an
m-dimensional vector).

Summations are simpler to work with than writing everything out in
full, but they are not as good as matrix notation itself.

Why is matrix notation preferred ?
We want to get on with the connection between matrix
multiplication and Guassian elimination.
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Matrix-Matrix Product

Four different ways to look at matrix multiplication :

1. Inner Product (Entry-wise) : Each entry AB is the product of a row and a column :

(AB)ij = row i of A times column j of B.

2. Row Picture (Row-wise) : Each row of AB is the product of a row and a matirx:

row i of AB = row i of A times B.

That is, if r1, r2, . . . , rm are the rows of A, then AB =


r1B
r2B

...
rmB

 .

3. Column Picture (column-wise) : Each column of AB is the product of a matrix and a
column :

column j of AB = A times column j of B.

That is, if c1, c2, . . . , cn are the columns of B, then

AB =
(
Ac1 Ac2 · · · Acn

)
.
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Matrix-Matrix Product

4. To discuss the fourth method of matrix-matrix multiplication, we define outer product :

Multiplication of a column matrix x =


x1

x2

...
xm

 and a row matrix y =
(
y1 y2 . . . yn

)
(may of different lengths) prodcues a matrix which is called the outer product of two
vectors, denoted by xyT :


x1

x2

...
xm

(y1 y2 . . . yn
)

:=


x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn

...
...

...
...

xmy1 xmy2 . . . xmyn

 .

If c1, c2, . . . , cp are the columns of Am×p and r1, r2, . . . , rp are the rows of Bp×n, then

AB =

p∑
i=1

ci ri (sum of p matrices).
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Matrix-Matrix Product

1. The ij-entry of AB is the inner product of the ith row of A and the jth column of B.

2. Rows of AB : AB =

(
1 0
2 3

)(
a b
c d

)
=

(
a b

2a + 3c 2b + 3d

)
.

The first row of AB is 1[a b] + 0[c d ] = [a b]. The second row of AB is
2[a b] + 3[c d ] = [2a + 3c, 2b + 3d ]. Each row of AB is a combination of the rows of B.

3. Columns of AB :

(
1 0
2 3

)(
a b
c d

)
=

(
a b

2a + 3c 2b + 3d

)
.

By columns, B consists of two columns side by side, and A multiplies each of them
separately. Therefore each column of AB is the combination of the columns of A.(

a
2a + 3c

)
= a

(
1
2

)
+ c

(
0
3

)
.(

b
2b + 3d

)
= b

(
1
2

)
+ d

(
0
3

)
.

The first columns of AB is “a” times column 1 plus “c” times column 2.

4. The matrix AB is a sum of two matrices :

AB =

(
1 0
2 3

)(
a b
c d

)
=

(
1
2

)(
a b

)
+

(
0
3

)(
c d

)
=

(
a b

2a + 3c 2b + 3d

)
.
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Exercises

Exercise 1.

Verify the following :

1. Matrix multiplication is associative: (AB)C = A(BC ).

2. Matrix operations are distributive: A(B + C ) = AB + AC and
(B + C )D = BD + CD.

3. Matrix multiplication is not commutative: Usually FE 6= EF .

Identity Matrix is the matrix which is n × n square matrix where the
diagonal elements are ones and the other elements are all zeros. It is
represented as In or just by I, where n represents the size of the square
matrix.

That is, identity matrix is a square matrix in which all the elements of the
principal diagonal are ones and all other elements are zeros. The effect of
multiplying a given matrix by an identity matrix is to leave the given
matrix unchanged.
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Elementary Matrices

1. Elementary matrix Eij is a square matrix and is obtained by
replacing ij th-element of the identity matrix I by −`ij .

2. Pre-multiplying Eij with A does the subtraction of `ij(Rowj) from
Rowi according to Gaussian Elimination.

3. For example, when we pre-multiply E31 =

 1 0 0
0 1 0
−`31 0 1

 with A3×3,

the first row of A gets multiplied by `31 and then it gets substracted
from the third row. That is,

new(Row3)→ −`31(Row1) + (Row3).
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Permutation Matrices

1. Permutation matrices are derived from the identity matrix I. If we
exchange the ith and jth rows of I, we get a permutation matrix,
denoted by Pij .

2. Pre-multiplying Pij with A exchanges the ith and jth rows of A.

3. For example, when we pre-multiply the permutation matrix

P23 =

1 0 0
0 0 1
0 1 0

 with A3×3, 2nd and 3rd rows of A are

interchanged.

4. Product of two permutation matrices is again a permutation matrix.
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Exercises

Exercises 2.

1. What about inverse of a permutation matrix P?

2. Is AEij possible? When possible, what is happening in A?

3. What should be done if you want exchange two columns?

4. Is APij possible? When possible, what is happening in A?
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Triangular Factors and Row Exchanges

Given a system Ax =

 2 1 1
4 −6 0
−2 7 2

 u
v
w

 =

 5
−2
9

 = b.

First step : subtract 2 times the first equation from the second. The

elementary matirx E =

 1 0 0
−2 1 0
0 0 1

 should be pre-multiplied in

Ax = b, we get

EAx =

 1 0 0
−2 1 0
0 0 1

 2 1 1
4 −6 0
−2 7 2

 =

 1 0 0
−2 1 0
0 0 1

 5
−2
9

 .

Our original matrix subtracts 2 times the first component from the second,
leaving the first and third components unchanged. After this step the new
and simple system (equivalent to the old) is just E (Ax) = Eb.
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Triangular Factors and Row Exchanges

In the above example, there are three elimination steps :

(a) subtract 2 times the first equation from the second

(b) subtract −1 times the first equation from the third

(c) subtract −1 times the second equation from the third.

The result is an equivalent but simpler system, with a new coefficient
matrix U (upper triangular matrix) :

Ux =

 2 1 1
0 −8 −2
0 0 1

 u
v
w

 =

 5
−12

2

 = c .
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Triangular Factors and Row Exchanges

The elementary matrices for steps (i), (ii) and (iii) repectively are

E =

 1 0 0
−2 1 0
0 0 1

 , F =

 1 0 0
0 1 0
1 0 1

 G =

 1 0 0
0 1 0
0 1 1

.

The result of all three steps GFEA = U, where GFE =

 1 0 0
−2 1 0
−1 1 1

 is

a lower triangular matrix. We could multiply GFE together to find the
single matrix that takes A to U (and also takes b to c). The product GFE
is the true order of elimination. It is the matrix that takes the original A to
the upper triangular U.

This is good, but the most important question is exactly the opposite.
How would we get from U back to A? How can we undo the steps of
Gaussian elimination.
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Triangular Factors and Row Exchanges

A single step, say step (a), is not hard to undo. Instead of subtracting, we
add twice the first row to the second. (Not twice the second row to the
first!) The result of doing both the subtraction and the addition is to bring
back the identity matrix. 1 0 0

2 1 0
0 0 1

 1 0 0
−2 1 0
0 0 1

 =

 1 0 0
0 1 0
0 0 1

 .

If the elementary matrix E has the number −` in the (i , j) position, then
its inverse has +` in that position.

That matrix is denoted by E−1. Thus E−1 times E is the identity matrix.
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Triangular Factors and Row Exchanges

The final problem is to undo the whose process at once, and the matrix
E−1F−1G−1 takes U back to A. Inverses come in the opposite order.

Thus LU = A, where L = E−1F−1G−1.

Now we recognize the matrix L that takes U back to A. It is called L,
because it is lower triangular. And it has a special property that can be
seen only multiplying the three inverse matrices in the right order :

E−1F−1G−1 =

 1
2 1

1

 1
1

-1 1

 1
1
-1 1

 =

 1
2 1
-1 -1 1

 = L.

The special thing is that the entries below the diagonal are the multipliers
` = 2,−1 and −1.
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Triangular Factors and Row Exchanges

If no row exchanges are required, the orignial matrix A can be written as a
product A = LU.

The matrix L is lower triangular, with 1‘s on the diagonal and the
multipliers `ij (taken from elimination) below the diagonal.

U is the upper triangular matrix which appears after forward elimination
and before back-substitution; its diagonal entries are the pivots.
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Without Row Exchanges - An Example

Let us consider the linear system


2u + v + w = 5

4u − 6v = −2

−2u + 7v + 2w = 9

Step 1 elimination :
Row2 → Row2 − 2Row1, Row3 → Row3 − (−1)Row1

Elementary matrices : E21 =

 1 0 0
−2 1 0
0 1 1

 , E31 =

1 0 0
0 1 0
1 0 1


Step 2 elimination : Row3 → Row3 − (−1)Row2

Elementary matrices : E32 =

1 0 0
0 1 0
0 1 1


The product E32E31E21A becomes an upper diagonal matrix, say U.
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Example - Gaussian Elimination

1 0 0
0 1 0
0 1 1


︸ ︷︷ ︸

E32

1 0 0
0 1 0
1 0 1


︸ ︷︷ ︸

E31

 1 0 0
−2 1 0
0 0 1


︸ ︷︷ ︸

E21

 2 1 1
4 −6 0
−2 7 2


︸ ︷︷ ︸

A

=

2 1 1
0 −8 −2
0 0 1


︸ ︷︷ ︸

U

1 0 0
2 1 0
0 0 1


︸ ︷︷ ︸

F21

 1 0 0
0 1 0
−1 0 1


︸ ︷︷ ︸

F31

1 0 0
0 1 0
0 −1 1


︸ ︷︷ ︸

F32

2 1 1
0 −8 −2
0 0 1


︸ ︷︷ ︸

U

=

 2 1 1
4 −6 0
−2 7 2


︸ ︷︷ ︸

A

We denote the inverse of Eij by Fij . That is, F21F31F32 = (E32E31E21)−1 and

F21 = E−1
21 ,F31 = E−1

31 ,F32 = E−1
32 . Thus

 2 1 1
4 −6 0
−2 7 2


︸ ︷︷ ︸

A

=

 1 0 0
2 1 0
−1 −1 1


︸ ︷︷ ︸

L

2 1 1
0 −8 −2
0 0 1


︸ ︷︷ ︸

U

.
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Triangular Factorization A = LU

One linear system = two triangular system. When L and U are known,
A could be thrown away. We go from b to c by forward elimination (that
uses L) and we go from c to x by back-substitution (that uses U). We can
and should do without A, when its factors have been found. (A = Lu,
b = Ax = LUx implies L−1Ax = L−1b = c).

In matrix terms, elimination splits Ax = b into two triangular systems:
first Lc = b and then Ux = c . This identical to Ax = b. Pre-multiply
Ux = c by L to give LUx = Lc , which is Ax = b.

Each triangular system can be solved in n2/2 steps. The solution for any
new right side b′ can be found in only n2 operations. That is far below the
n3/3 steps needed to factor A on the left hand side.
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Triangular Factorization A = LU

The triangular factorization is often written A = LDU, where L and U
have 1‘s on the diagonal and D is the diagonal matrix of pivots.

It is conventional, although completely confusing, to go on denoting this
new upper triangular matrix by the same letter U. Whenever you see
LDU, it is understood that U has 1’s on the diagonal - in other words that
each row was divided by the pivot. Then L and U are treated evenly. An

example for A =

(
1 2
3 4

)
is

A =

(
1
3 1

)(
1 2
−2

)
=

(
1
3 1

)(
1
−2

)(
1 2

1

)
= LDU.

That has the 1’s on the diagonals of L and U, and the pivots 1 and −2 in
D.
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Unique Triangular Factorization

If A = L1D1U1 and A = L2D2U2, where the L‘s are lower triangular with
unit diagonal, the U‘s are upper triangular with unit diagonal, and the D‘s
are diagonal matrices with no zeros on the diagonal, then

L1 = L2, D1 = D2, U1 = U2.

The LDU factorization and the LU factorization are uniquely determined
by A.
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Example - Gaussian Elimination

How to solve for x? We have not applied row operations on RHS b.

Ax = b =⇒ LUx = b.

To solve Ax = b, we solve two triangular systems in the order
Ly = b ; Ux = y .

If A remains same, but b changes (in any mathematical model),
Gaussian Elimination provides both L and U. Only solution needs to
be found for every changing vector b.

We can also write as A = LDU, where D is the diagonal matrix with
pivots on the diagonals, L and U are lower and upper triangular
matrices with unit diagonal entries.
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Row Exchanges and Permutation Matrices

We have to face a problem that the number we expect to use as a pivot
might be zero. This could occur in the middle of a calculation, or it can
happen at the very beginning (in case a11 = 0.) A simple example is(

0 2
3 4

)(
u
v

)
=

(
b1

b2

)
. The difficulty is clear, no multiple of the

first equation will remove the coefficient 3.

The remedy is equally clear.

Exchange the two equations, moving the entry 3 up into the pivot.

To express this in matrix terms, we need to find the permutation matrix

that produces the row exchange. It is P =

(
0 1
1 0

)
and multiply by

P does exchange the rows.
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Zero in the Pivot Location

The next difficult case is that a zero in the pivot location raises two
possibilites: the trouble may be easy to fix, or it may be serious.

This is decided by looking below the zero. If there is a nonzero entry lower
down in the same column, then a row exchange is carried out; the nonzero
entry becomes the needed pivot, and estimation can get going again.

In the example, A =

 0 a b
0 0 c
d e f

, everything depends on the number d .

If d = 0, the problem is incurable and matrix is singular. There is no hope
for a unique solution.
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Zero in the Pivot Location

If d is not zero, an exchange of rows 1 and 3, permutation matrix

P13 =

 0 0 1
0 1 0
1 0 0


will move d into the pivot, and stage 1 is complete. However the next
pivot position also contains a zero.

The number a is now below it (the e above is useless) and if a is not zero,
then another row exchange is called for

P23 =

 1 0 0
0 0 1
0 1 0


(exchange of rows 2 and 3).
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Zero in the Pivot Location

There is a permutation matrix that will do both of the row exchanges at
once, which is the product of the two separate permutaions

P23P13 = P =

 0 0 1
1 0 0
0 1 0


(first exchange rows 1 and 3, then exchange rows 2 and 3).

If we had known what to do, we could have multiplied our matrix by P in
the first place.

Then elimination order would have no difficulty with PA; it was only that
the original order was unfortunate.
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Example - Gaussian Elimination

Triangular factorization: A = LU L = F21F31F32

Diagonals of L are ones and diagonals of U are the pivots.

In this example : L = F21F31F32 =

 1 0 0
`21 1 0
`31 `32 1


All multiples used in elimination are the elements of L.

.
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Summary

The theory of Gaussian elimination can be summarized as follows:
In the nonsingular case, there is a permutation matrix P that reorders the
rows of A to avoid zeros in the pivot positions. In this case

(a) Ax = b has a unique solution

(b) it is found by elimination with row exchanges

(c) with the rows reordered in advance, PA can be factored into LU.

In singular case, no reordering can produce a full set of pivots.
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Caution about the lower triangular matrix L

Suppose elimination subtracts row 1 from row 2, creating `21 = 1. Then
suppose it exchanges rows 2 and 3. If that exchange is done in advance,
the multiplier will change to `31 = 1 in PA = LU.

A =

 1 1 1
1 1 3
2 5 8

→
 1 1 1

0 0 2
0 3 6

→
 1 1 1

0 3 6
0 0 2

 = U.

With the rows exchanged, we recover LU - but now `31 = 1 and `21 = 2.

P =

 1 0 0
0 0 1
0 0 1

 and L =

 1 0 0
2 1 0
1 0 1

 and PA = LU.
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With Row Exchanges

A =

3 4 7
6 8 3
1 2 1

→
3 4 7

0 0 −11
0 2

3 −4
3

→
3 4 7

0 2
3 −4

3
0 0 −11



Step 1 : Multipliers are `21 = 2 and `31 = 1
3 .

Step 2 : Row exchange needed. Pre-multiply by the permutation matrix

P23 =

1 0 0
0 0 1
0 1 0

 .

We get P23A = LU, where L =

1 0 0
1
3 1 0
2 0 1

.
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What if more row exchanges are done on A at different
stages of eliminatation?

Consider A =

0 3 2
0 0 4
2 4 9


Row1 ↔ Row3 : P13 =

0 0 1
0 1 0
1 0 0


Elimination `21 = `31 = 0 (No elimination at step 1 after row exchange)

Row2 ↔ Row3 : P23 =

1 0 0
0 0 1
0 1 0


Elimination : `32 = 0 (No elimination at step 2 after row exchange)

U =

2 4 9
0 3 2
0 0 4

.

We get P23P13A = LU (L = I in this example).
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Example - Gaussian Elimination

For a nonsingular matrix A, there is a permutation matrix P that
reorders the rows of A to avoid zeros in the pivot positions. Then
Ax = b has a unique solution. With the rows reordered in advance,
PA can be factored into LU.

In practice, we cannot reorder in advance. Still it is possible to obtain
correct P, L,U matrices so that PA = LU.
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Exercises

Exercises 3.
1. What multiple `32 of row 2 of A will elimination subtract from row 3 of A? Use the factored form

A =

1 0 0
2 1 0
1 4 1

5 7 8
0 2 3
0 0 6

 .

What will be the pivots? Will a row exchange be required?

2. (a) Why does it take approximately n2/2 multiplication-subtraction steps
to solve each of Lc = b and Ux = c?

(b) How many steps does elimination use in solving 10 systems with the
same 60 by 60 coefficient matrix A?

3. Apply elimination to produce the factors L and U for

A =

[
2 1
8 7

]
and A =

3 1 1
1 3 1
1 1 3

 and A =

1 1 1
1 4 4
1 4 8

 .

4. Find a 4 by 4 permutation matrix that requires three row exchanges to reach the end of elimination (which is U = I ).

5. How could you factor A into a product UL, upper triangular times lower triangular? Would they be the same factors as
in A = LU?
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Exercises

Exercises 4.
1. Solve by elimination, exchanging rows when necessary:

u + 4v + 2w = −2 v + w = 0

− 2u − 8v + 3w = 32 and u + v = 0

v + w = 1 u + v + w = 1.

Which permutation matrices are required?

2. (Move to 3 by 3) Forward elimination changes Ax = b to a triangular Ux = c:

x + y + z = 5 x + y + z = 5 x + y + z = 5

x + 2y + 3z = 7 y + 2z = 2 y + 2z = 2

x + 3y + 6z = 11 2y + 5z = 6 z = 2.

The equation z = 2 in Ux = c comes from the original x + 3y + 6z = 11 in Ax = b by subtracting `31 =
times equation 1 and `32 = times the final equation 2. Reverse that to recover

[
1 3 6 11

]
in[

A b
]

from the final
[
1 1 1 5

]
and

[
0 1 2 2

]
and

[
0 0 1 2

]
in
[
U c

]
:

Row 3 of
[
A b

]
= (`31 Row 1 + `32 Row 2 + 1 Row 3) of

[
U c

]
.

In matrix notation this is multiplication by L. So A = LU and b = Lc.
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Exercises

Exercises 5.
1. What two elimination matrices E21 and E32 put A into upper triangular form E32E21A = U? Multiply by E−1

32 and

E−1
21 to factor A into LU = E−1

21 E−1
32 U:

A =

1 1 1
2 4 5
0 4 0

 .

2. Solve Lc = b to find c. Then solve Ux = c to find x . What was A?

L =

1 0 0
1 1 0
1 1 1

 and U =

1 1 1
0 1 1
0 0 1

 and b =

4
5
6

 .

3. (Review) For which numbers c is A = LU impossible—with three pivots?

A =

1 2 0
3 c 1
0 1 1

 .

4. Estimate the time difference for each new right-hand side b when n = 800. Create A = rand(800) and b = rand(800, 1)
and B = rand(800, 9). Compare the times from tic; A\b; toc and tic; A\B; toc (which solves for 9 right sides).

P. Sam Johnson Matrices and Gaussian Elimination (Part-2) 39/69



Exercises

Exercises 6.
1. If P1 and P2 are permutation matrices, so is P1P2. This still has the rows of I in some

order. Give examples with P1P2 6= P2P1 and P3P4 = P4P3.

2. Find a 3 by 3 permutation matrix with P3 = I (but not P = I ). Find a 4 by 4

permutation P̂ with P̂4 6= I .

3. There are 12 “even” permutations of (1, 2, 3, 4), with an even number of exchanges. Two
of them are (1, 2, 3, 4) with no exchanges and (4, 3, 2, 1) with two exchanges. List the
other ten. Instead of writing each 4 by 4 matrix, use the numbers 4, 3, 2, 1 to give the
position of the 1 in each row.

4. The matrix P that multiplies (x , y , z) to give (z, x , y) is also a rotation matrix. Find P
and P3. The rotation axis a = (1, 1, 1) doesn’t move, it equals Pa. What is the angle of
rotation from v = (2, 3,−5) to Pv = (−5, 2, 3)?

5. If P has 1s on the antidiagonal from (1, n) to (n, 1), describe PAP.
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Inverse

A left inverse of a matrix A is any matrix B such that BA = I. A right
inverse of A is any matrix C such that AC = I.

A matrix B is said to be an inverse of A if it is both a left inverse and a
right inverse of A. The matrix is invertible if there exists a matrix B such
that BA = I and AB = I. There is at most one such B, called the inverse
of A and denoted by A−1: A−1A = I and AA−1 = I.

If there exists x 6= 0 such that Ax = 0, then A−1 does not exist.

If inverse of a matrix exists, then it is unique.

If A−1 exists, then x = A−1b is the unique solution of Ax = b.

A product AB of invertible matrices has an inverse. It is found by
multiplying the individual inverses in reverse order:

(AB)−1 = B−1A−1.
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Exercises

Exercises 7.

1. What is the inverse of a 2× 2 matrix?

2. What is the inverse of

(a) Identity matrix?
(b) Diagonal matrix?
(c) Lower and upper triangular matrices?
(d) Elementary and permutation matrices?

3. If BA = I and AC = I, then show that B = C .

Gauss-Jordan Elimination is an algorithm that can be used to solve
systems of linear equations and to find the inverse of any invertible matrix.
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Gauss-Jordan Method

Consider the equation AA−1 = I. If it is taken a column at a time, that
equation determines the column of A−1. The first column of the identity
matrix I is the product of A and the first column of A−1.

Consider a square matrix of order 3.

Let x1, x2, x3 be the columns of A−1. Then Ax1 = e1,Ax2 = e2,Ax3 = e3.
Thus we have three systems of equations (or, in general n systems) and
they all have the same coefficient matrix A.

The right sides are different, but it is possible to carry out elimination on
all systems simultaeously. This is called the Gauss-Jordan method.
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Gauss-Jordan Method

Instead of stopping at U and switching to back-substitution, it continues
by subtracting multiplies of a row, from the rows above. It produces zeros
above the diagonal as well as below, and when it reaches the identity
matrix we have found A−1.

[A I]→ [U L−1]→ [I A−1]

The example keeps all three columns e1, e2, e3, and operates on rows of
length six : [A e1 e2 e3] becomes 2 1 1 1 0 0

4 −6 0 0 1 0
−2 7 2 0 0 1

 =

 2 1 1 1 0 0
0 −8 −2 −2 1 0
0 0 1 −1 1 1

 = [U L−1].
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Gauss-Jordan Method

The first half of elimination has gone from A to U, and now the second
half will go from U to I.

Creating zeros above the pivots in the matrix, we reach A−1: The matrix
[U L−1] becomes 2 1 0 2 −1 −1

0 −8 0 −4 3 2
0 0 1 −1 1 1

 =

 1 0 0 12
16

−5
16

−6
16

0 1 0 4
8

−3
8

−2
8

0 0 1 −1 1 1

 = [I A−1].

So A−1 =

 12
16

−5
16

−6
16

4
8

−3
8

−2
8

−1 1 1

 .
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Gauss-Jordan Method

At the last step, we divided through by the pivots. The coefficient matrix in the left half became
the identity. Since A went to I, the same operations on the right half must have carried I into
A−1. Therefore we have computed the inverse. The number of operations required to find A−1

is given below :

The normal count for each new right-hand side is n2, half in the forward direction and half in
back-substitution. With n-right-hand sides e1, . . . , en this makes n3. After including the n3/3
operations on A itself, the total seems to be 4n3/3.

This result is a little too high because of the zeros in the ej . Forward elimination changes only
the zeros below the 1. This part has only n − j components, so the count for ej is effectively
changes to (n − j)2/2. Summing over all j , the total for forward elimination is n3/6. This is to
be combined with the usual n3/3 operations that are applies to A, and the n(n2/2)
back-substitution steps that finally produce the columns xj of A−1.

The final operation count for computing A−1 is n3 :

Operation count
n3

6
+

n3

3
+ n
(n2

2

)
= n3.
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Symmetric Matrices

The transpose of a lower triangular matrix is upper triangular. The
transpose of AT brings us back to A. If we add two matrices A and B and
then transpose the result is the same as first transposing and then adding:
(A + B)T = AT + BT . Also, (AB)T = BTAT and (A−1)T = (AT )−1.

A special class of matrices, probably the most important class of all.

A symmetric matrix is a matrix which equals its own transpose. That is,
AT = A.

The matric is necessarily square, and each entry on one side of the
diagonal equals its “mirror image” on the other side aij = aji .

If A is symmetric, then A−1 is symmetric (if A−1 exits). Symmetric
matrices appear in every subject whose laws are fair. “Each action has an
equal and opposite reaction”, and the entry which gives the action of i
onto j is matched by the action of j onto i .
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Symmetric Matrices

When elimination is applied to a symmetric matrix, AT = A is an
advantage. The smaller matrices stay symmetric as elimination proceeds,
and we can work with half the matrix. The lower right-hand corner
remains symmetric :a b c

b d e
c e f

→
a b c

0 d − b2

a e − bc
a

0 e − bc
a f − c2

a

 .

The work of elimination is reduced from n3/3 to n3/6. There is no need to
store entires from both sides of the diagonal, or to store both L and U.

LDU Factorization for Symmetric Matrices. If A is symmetric, and if it
can be factored into A = LDU without row exchanges to destroy the
symmetry, then the upper triangular U is the transpose of the lower
triangular L. The factorization becomes A = LDLT .
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Relation Between Pivots and Matrix Inverse

Theorem 8.
Let A be an n × n matrix. Then A−1 exists if and only if A has n pivots.

Proof :

If A has n pivots, then Gauss-Jordan elimination will be done successfully and we obtain
A→ I by a sequence E1,E2, . . . ,Ek of elementary martices, permutations or matrices
which divide the row by pivot. Let EkEk−1 · · ·E2E1A = I and B = EkEk−1 · · ·E2E1. Then
BA = I.

Since A has n pivots, then system A


c11

c21

...
cn1

 =


1
0
...
0

 has a solution. Similarly,

A


c1j

c2j

...
cnj

 =



0
...
1
...
0


has a solution. Let C = (cij). Then AC = I. Hence B = C . Thus A is

invertible.
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Proof (contd...)

To prove the converse part, we assume that B = A−1 exists. Then AB = I.
Suppose A has < n pivots. This means elimination on A produces at least a zero row.

Let M be the product of the sequence of steps (elimination) that led to the zero row.
Then MA has a zero row.

Also AB = I. This implies (MA)B = M.

Thus M has a zero row, but that is not possible. Thus A must has n pivots.
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Transpose

The transpose of a matrix is found by interchanging its rows into columns
or columns into rows. The transpose of the matrix is denoted by using the
letter “T” in the superscript of the given matrix. The transpose of a
matrix A is denoted by AT .

If A is lower triangular, then AT is upper triangular.

(A + B)T = AT + BT .

(AB)T = BTAT .

(A−1)T = (AT )−1.

A symmetric matrix is a matrix that is equal to its transpose. That is, A
is symmetric if A = AT .
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Exercises

Exercises 9.

1. If L is a lower triangular matrix and invertible, then prove that L−1 is
also a lower triangular matrix.

2. Let P be a permutation matrix. Then show that P−1 = PT .

3. Let L be a lower triangular matrix. Then L is invertible iff the
diagonal elments of L are nonzero.

4. Suppose elimination fails because there is no pivot in column 3:

Missing pivot A =


2 1 4 6
0 3 8 5
0 0 0 7
0 0 0 9

 .

Show that A cannot be invertible. The third row of A−1, multiplying
A, should give the third row

[
0 0 1 0

]
of A−1A = I . Why is this

impossible?
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Exercises

Exercises 10.
1. If the inverse of A2 is B, show that the inverse of A is AB. (Thus A is invertible whenever

A2 is invertible.)

2. (a) Find the inverses of the permutation matrices

P =

0 0 1
0 1 0
1 0 0

 and P =

0 0 1
1 0 0
0 1 0

 .

(b) Explain for permutations why P−1 is always the same as PT . Show
that the 1s are in the right places to give PPT = I .

3. Use the Gauss-Jordan method to invert

A1 =

1 0 0
1 1 1
0 0 1

 , A2 =

 2 −1 0
−1 2 −1

0 −1 2

 , A3 =

0 0 1
0 1 1
1 1 1

 .
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Exercises

Exercises 11.
1. Compute the symmetric LDLT factorization of

A =

1 3 5
3 12 18
5 18 30

 and A =

[
a b
b d

]
.

2. Find the inverse of

A =


1 0 0 0
1
4

1 0 0
1
3

1
3

1 0
1
2

1
2

1
2

1

 .

3. If A =

[
3
1

]
and B =

[
2
2

]
, compute ATB, BTA, ABT , and BAT .

4. Suppose A is invertible and you exchange its first two rows to reach B. Is the new matrix
B invertible? How would you find B−1 from A−1?

5. (Remarkable) If A and B are square matrices, show that I − BA is invertible if I − AB is
invertible. Start from B(I − AB) = (I − BA)B.

6. Prove that a matrix with a column of zeros cannot have an inverse.
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Exercises

Exercises 12.
1. Prove that A is invertible if a 6= 0 and a 6= b (find the pivots and A−1):

A =

a b b
a a b
a a a

 .

2. True or false (with a counterexample if false and a reason if true):

(a) A 4 by 4 matrix with a row of zeros is not invertible.
(b) A matrix with 1s down the main diagonal is invertible.
(c) If A is invertible then A−1 is invertible.
(d) If AT is invertible then A is invertible.

3. Verify that (AB)T equals BTAT but those are different from ATBT :

A =

[
1 0
2 1

]
B =

[
1 3
0 1

]
AB =

[
1 3
2 7

]
.

In case AB = BA (not generally true!), how do you prove that BTAT = ATBT ?
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Exercises

Exercises 13.
1. Factor these symmetric matrices into A = LDLT . The matrix D is diagonal:

A =

[
1 3
3 2

]
and A =

[
1 b
b c

]
and A =

 2 −1 0
−1 2 −1

0 −1 2

 .

2. If A = AT needs a row exchange, then it also needs a column exchange to stay symmetric.
In matrix language, PA loses the symmetry of A but recovers the symmetry.

3. Here is a new factorization of A into triangular times symmetric:

Start from A = LDU. Then A equals L(UT )−1 times UTDU.

Why is L(UT )−1 triangular? Its diagonal is all 1s. Why is UTDU symmetric?

4. A square northwest matrix B is zero in the southeast corner, below the antidiagonal that
connects (1, n) to (n, 1). Will BT and B2 be northwest matrices? Will B−1 be northwest
or southeast? What is the shape of BC = northwest times southeast? You are allowed to
combine permutations with the usual L and U (southwest and northeast).
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Special Matrices and Applications

We now discuss two points. The first is to explain one way in which large
systems of linear equations can arise in practice. The other goal is to
illustrate, by the same application, the special properties that coefficient
matrices frequently have. It is unusual to meet large matrices that look as
if there were constructed at random. Almost always there is a pattern,
visible even at first sight - frequently a pattern of symmetry, and of very
many zero entries. In the latter case, since a sparse matrix contains far
fewer than n2 pieces of information, the computations ought to work out
much more simply than for a full matrix.

We shall look particularly at band matrices, whose nonzero entries are
concentrated near the main diagonal, to see how this property is reflected
in the elimination process. In fact we look at one special band matrix.
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Special Matrices and Applications

Our example comes from changing a continuous problem into a discrete
one. The continuous problem will have infinitely many unknowns (its asks
for u(x) at every x), and it cannot be solved exactly on a computer.
Therefore it has to be approximated by a discrete problem - the more
unknowns we keep, the better will be the accuracy and the greater the
expense.

As a simple but still very typical continuous problem, our choice falls on
the differential equation −d2u

dx2 = f (x), 0 ≤ x ≤ 1. This is a linear
equation for the unknown function u, with inhomogeneous term f . There
is some arbitrariness left in the problem, because any combination C = Dx
could be added to any solution.

The sum would constitute another solution, since the second derivative of
C + Dx contributes nothing. Therefore the uncertainty left by these two
arbitrary constants C and D will be removed by adding a “boundary
condition” at each end of the interval: u(0) = 0, u(1) = 0.
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Special Matrices and Applications

The result is a two-point boundary-value problem, describing not a
transient but a steady-state phenomenon - the temperature distribution in
a rod, for example, with ends fixed at 0◦ and with a heat source f (x).

Remember that our goal is to produce that is discrete, or
finite-dimensional - in other words, a problem in linear algebra.

For that reason we cannot accept more a finite amount of information
about f , say its values at the equally spaced points
x = h, x = 2h, . . . , x = nh. And what we compute will be approximate
values u1, . . . , un for the true solution u at these same points. At the ends
x = 0 and x = 1 = (n + 1)h, we are already given the correct boundary
values u0 = 0, un+1 = 0.
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Special Matrices and Applications

The first question is, How de we replace the derivative d2u/dx2?

For du/dx there are several alternatives

du

dx
≈ u(x + h)− u(x)

h
or

u(x)− u(x − h)

h
or

u(x + h)− u(x − h)

2h
.

The last, because it is symmetric about x , is actually the most accurate.
For the second derivative there is just one combination that uses only the
values at x and x ± h:

d2u

dx2
≈ u(x + h)− 2u(x) + u(x + h)

h2
.

It also has the merit of being symmetric about x .
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Special Matrices and Applications

At a typical meshpoint x = jh, the differential equations −d2u/dx2 = f (x)
is now replaced by this discrete analogue

d2u

dx2
≈ u(x + h)− 2u(x) + u(x + h)

h2
,

after multiplying through by h2, −uj + 1 + 2uj − uj−1 = h2f (jh). There
are n equations of exactly this form, one for every value j = 1, . . . , n.

The first and last equations include the expressions u0 and un+1, where
are not unknowns - their values are the boundary conditions, and they
are shifted to the right side of the equation and contribute to the
non-homogeneous terms (in our example, they are zero).

It is easy to understand the previous equation as a steady-state equation,
in which the flows (ui − uj+1) coming from the right and (uj − uj−1)
coming from the left are balanced by the loss of h2f (jh) at the center.
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Special Matrices and Applications

The structure of the n equations −uj + 1 + 2uj − uj−1 = h2f (jh) can be
better visualized in matrix form Au = b. We shall choose h = 1

6 , or n = 5:


2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2



u1

u2

u3

u4

u5

 = h2


f (h)
f (2h)
f (3h)
f (4h)
f (5h)

 .

From now on, we will work with the above equation, and it is not essential
to look back at the source of the problem.
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Special Matrices and Applications

The matrix A possesses many special properties, and three of those
properties are fundamental :

1. The matrix is trigiagonal. All its nonzero entries lie on the main
diagonal and the two adjacent diagonals. Outside this band there is
nothing : aij = 0 if |i − j | > 1.

2. The matrix is symmetric. Each entry aij equals its mirror image aji ,
so that AT = A. Therefore the upper triangular U will be the
transpose of the lower triangular L, and the final factorization will be
A = LDLT . This symmetry of A reflects the symmetry of the original
differential equation. If there had been an odd derivative like d3u/dx3

of du/dx . A would not have been symmetric.

3. The matrix is positive definite. It says that the pivots are positive
but symmetry with positive pivots does have one immediate
consequence: Row exchanges are unnecessary both in theory and in
practice. The product of the pivots is the determinant of A.
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Special Matrices and Applications

We can summarize the final result in several ways. The most revealing is to look at the LDU
factorization of A :

A =


1
−1
2

1
−2
3

1
−3
4

1
−4
5

1




2
1

3
2

4
3

5
4

6
5




1 −1
2
1 −2

3
1 −3

4
1 −4

5
1

 .

The L and U factors of a tridiagonal matrix are bidiagonal. These factors have more or less the

same structure of zeros as A itself. Note that L and U are transposes of one another, as was

expected from the symmetry, and that the pivots di are all positive. The pivots are obviously

converging to a limiting value of +1, as n gets large. Such matrices make a computer very

happy.
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Special Matrices and Applications

These simplifications lead to a complete change in the usual operation
count. At each elimination stage only two operations are needed, and
there are n such stages. Therefore in place of n3/3 operations we need
only 2n; the computation is quicker by orders of magnitude. And the same
is true of back-substitution; instead of n2/2 operations we again need only
2n. Thus the number of operations for a tridiagonal system is proportional
to n, not to a higher power of n. Tridiagonal systems Ax = b can be
solved almost instantaneously.

Suppose, more generally, that A is a band matrix; its entries are all zero
except within the band |i − j | < w . The “half bandwidth” is w = 1 for a
diagonal matrix, w = 2 for a tridiagonal matrix, and w = n for a full
matrix. The first stage of elimination requires w(w − 1) operations, and
after this stage we still have bankwidth w . Since there are about n stages,
elimination on a bank matric must require about w2n operations.
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Special Matrices and Applications

The operation count is proportional to n, and now we see that it is
proportional also to the square of w . As w approaches n, the matrix
becomes full, and the count again is roughly n3. A more exact count
depends on the fact that in the lower right corner the bandwidth is no
longer w ; there is no room for that many bands.

The precise number of divisions and multiplication-subtractions that
produce L,D, and U (without assuming a symmetric A) is

P =
1

3
w(w − 1)(3n − 2w + 1).

For a full matrix, which has w = n, we recover P = 1
3n(n − 1)(n + 1).

To summarize : A band matrix A has triangular factors L and U that lie
within the same band, and both elimination and back-substitution are very
fast. This is our last operation count, but we must emphasize the main
point.

P. Sam Johnson Matrices and Gaussian Elimination (Part-2) 66/69



Roundoff Error

For a finite difference matrix like A, the inverse is a full matrix. Therefore,
in solving Ax = b, we are actually much worse off knowing A−1 than
knowing L and U. Multiplying A−1 by b takes n2 steps, whereas 4n are
sufficient to solve Lc = b and then Ux = c - the forward elimination and
back-substitution that produce x = U−1c = U−1L−1b = A−1b.

In theory, the nonsingular case is completed. Row exchanges may be
necessary to achieve a full set of pivots; then back-substitution solves
Ax = b. In practice, other row exchanges may be equally necessary - or
the computed solution can easily become worthless. Remember that for a
system of moderate size, say 100 by 100, elimination involves a third of a
million operations. With each operation we must expect a roundoff error.
Normally, we keep a fixed number of significant digits (say three, for an
extremely weak computer). Then adding two numbers of different sizes
gives 0.345 + 0.00123→ 0.346 and the last digits in the smaller number
are completely lost.
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Roundoff Error

The question is, how do all these individual roundoff errors contribute to
the final error in the solution?

This is not an easy problem. It was attacked by John von Neumann, who
was the leading mathematician at the time when computers suddenly
made a million operations possible.

In fact, the combination of Gauss and von Neumann gives the simple
elimination algorithm a remarkabble distinguished history, although even
von Neumann got a very complicated estimate of the roundoff error; it was
Wilkinson who found the right way to answer the question, and his books
are now classics.
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